

Managerial Accounting and Cost Concepts

Chapter 02

PowerPoint Authors:

Susan Coomer Galbreath, Ph.D., CPA Charles W. Caldwell, D.B.A., CMA Jon A. Booker, Ph.D., CPA, CIA Cynthia J. Rooney, Ph.D., CPA

Classifications of Manufacturing Costs

Direct Materials

Raw materials that become an integral part of the product and that can be conveniently traced directly to it.

Direct Labor

Those labor costs that can be easily traced to individual units of product.

Example: Wages paid to automobile assembly workers

Manufacturing Overhead

Manufacturing costs that cannot be easily traced directly to specific units produced.

Nonmanufacturing Costs

Product Costs Versus Period Costs

Classifications of Costs

Manufacturing costs are often classified as follows:

Variable Cost

Your total texting bill is based on how many texts you send.

Number of Texts Sent

Variable Cost Per Unit

The **cost per text** sent is constant at 5 cents per text message.

Cost Per Text Sent

Number of Texts Sent

Fixed Cost

Your monthly contract fee for your cell phone is fixed for the number of monthly minutes in your contract. The monthly contract fee does not change based on the number of calls you make.

Number of Minutes Used Within Monthly Plan

Fixed Cost Per Unit

Within the monthly contract allotment, the average fixed cost per cell phone call made decreases as more calls are made.

Are made. Contract Fee

> Number of Minutes Used Within Monthly Plan

Committed

Long-term, cannot be significantly reduced in the short term.

Examples

Depreciation on Buildings and Equipment and Real Estate Taxes

Discretionary

May be altered in the short-term by current managerial decisions

Examples

Advertising and Research and Development

The Linearity Assumption and the Relevant Range

Activity

\mathcal{O}

Fixed Costs and the Relevant Range

End of Chapter 02

Cost-Volume-Profit Relationships

Chapter 05

PowerPoint Authors:

Susan Coomer Galbreath, Ph.D., CPA Charles W. Caldwell, D.B.A., CMA Jon A. Booker, Ph.D., CPA, CIA Cynthia J. Rooney, Ph.D., CPA

McGraw-Hill/Irwin

Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.

Basics of Cost-Volume-Profit Analysis

The contribution income statement is helpful to managers in judging the impact on profits of changes in selling price, cost, or volume. The emphasis is on cost behavior.

Racing Bicycle Company Contribution Income Statement						
						For the Month of June
Sales (500 bicycles)	\$	250,000				
Less: Variable expenses		150,000				
Contribution margin		100,000				
Less: Fixed expenses		80,000				
Net operating income	\$	20,000				

Contribution Margin (CM) is the amount remaining from sales revenue after variable expenses have been deducted.

Contribution Margin Ratio (CM Ratio)

The CM ratio is calculated by dividing the total contribution margin by total sales.

Racing Contribut For t	g Bicy ion Ir he Mo	cle Compa come Stat	any emer ne	nt	
		Total	Per	[.] Unit	CM Ratio
Sales (500 bicycles)	\$	250,000	\$	500	100%
Less: Variable expenses		150,000		300	60%
Contribution margin		100,000	\$	200	<mark>1</mark> 40%
Less: Fixed expenses		80,000			
Net operating income	\$	20,000			

 $100,000 \div 250,000 = 40\%$

Contribution Margin Ratio (CM Ratio)

The contribution margin ratio at Racing Bicycle is: CM per unit \$200

 $CM Ratio = \frac{CM per unit}{SP per unit} = \frac{\$200}{\$500} = 40\%$

The CM ratio can also be calculated by dividing the contribution margin per unit by the selling price per unit.

Contribution Margin Ratio (CM Ratio)

If Racing Bicycle increases sales from 400 to 500 bikes (\$50,000), contribution margin will increase by \$20,000 (\$50,000 × 40%). Here is the proof:

	400 Units	500 Units
Sales	\$200,000	\$250,000
Less: variable expenses	120,000	150,000
Contribution margin	80,000	100,000
Less: fixed expenses	80,000	/ 80,000
Net operating income	\$ -	\$ 20,000

A \$50,000 increase in sales revenue results in a \$20,000 increase in CM (\$50,000 × 40% = \$20,000).

Equation Method

Profit = Unit CM × Q – Fixed expenses

Our goal is to solve for the unknown "Q" which represents the quantity of units that must be sold to attain the target profit.

Target Profit Analysis

Suppose RBC's management wants to know how many bikes must be sold to earn a target profit of \$100,000.

Profit = Unit CM × Q – Fixed expenses

- $100,000 = 200 \times Q 80,000$
- $200 \times Q = 100,000 80,000$
- $Q = (\$100,000 + \$80,000) \div \$200$

 $\mathbf{Q} = 900$

The Formula Method

The formula uses the following equation.

Unit sales to attain the target profit = Target profit + Fixed expenses CM per unit

5-9

Target Profit Analysis in Terms of Unit Sales

Suppose Racing Bicycle Company wants to know how many bikes must be sold to earn a profit of \$100,000.

Unit sales to attain
the target profitTarget profit + Fixed expensesCM per unit

Unit sales =
$$\frac{\$100,000 + \$80,000}{\$200}$$

Unit sales = 900

Break-even in Dollar Sales: Equation Method

Suppose Racing Bicycle wants to compute the sales dollars required to break-even (earn a target profit of \$0). Let's use the equation method to solve this problem.

Profit = CM ratio × Sales – Fixed expenses

Break-even in Dollar Sales: Equation Method

Profit = CM ratio × Sales – Fixed expenses

 $0 = 40\% \times \text{Sales} - 80,000$

40% × Sales = \$80,000

Sales = \$80,000 ÷ 40%

Sales = \$200,000

Break-even in Dollar Sales: Formula Method

Now, let's use the formula method to calculate the dollar sales at the break-even point.

Dollar sales = $\frac{\$80,000}{40\%}$ Dollar sales = \$200,000

Cost Structure and Profit Stability

There are advantages and disadvantages to high fixed cost (or low variable cost) and low fixed cost (or high variable cost) structures.

An advantage of a high fixed cost structure is that income will be higher in good years compared to companies with lower proportion of fixed costs.

A disadvantage of a high fixed cost structure is that income will be lower in bad years compared to companies with lower proportion of fixed costs.

Companies with low fixed cost structures enjoy greater stability in income across good and bad years.

Key Assumptions of CVP Analysis

- Selling price is constant.
- Costs are linear and can be accurately divided into variable (constant per unit) and fixed (constant in total) elements.
- In multiproduct companies, the sales mix is constant.
- In manufacturing companies, inventories do not change (units produced = units sold).

End of Chapter 05

